Arsenical bronze is an alloy in which arsenic, as opposed to or in addition to tin or other constituent metals, is combined with copper to make bronze. The use of arsenic with copper, either as the secondary constituent or with another component such as tin, results in a stronger final product and better casting behavior.
Copper ore is often naturally contaminated with arsenic; hence, the term "arsenical bronze" when used in archaeology is typically only applied to alloys with an arsenic content higher than 1% by weight, in order to distinguish it from potentially accidental additions of arsenic.
+ Copper and arsenic ores ! Ore name | Chemical formula |
FeAsS | |
Cu3AsS4 | |
Cu2(AsO4)OH | |
Cu12As4S13 | |
Cu2(OH)2CO3 | |
Cu3(OH)2(CO3)2 | |
Reconstructing a possible sequence of events in prehistory involves considering the structure of copper ore deposits, which are mostly sulfides. The surface minerals would contain some native copper and oxidized minerals, but much of the copper and other minerals would have been washed further into the ore body, forming a secondary enrichment zone. This includes many minerals such as tennantite, with their arsenic, copper and iron. Thus, the surface deposits would have been used first; with some work, deeper sulfidic ores would have been uncovered and worked, and it would have been discovered that the material from this level had better properties.
Using these various ores, there are four possible methods that may have been used to produce arsenical bronze alloys. These are:
Greater sophistication of metal workers is suggested by Thornton et al. They suggest that iron arsenide was deliberately produced as part of the copper-smelting process, to be traded and used to make arsenical bronze elsewhere by addition to molten copper.
Artifacts made of arsenical bronze cover the complete spectrum of metal objects, from axes to ornaments. The method of manufacture involved heating the metal in crucibles, and casting it into moulds made of stone or clay. After solidifying, it would be polished or, in the case of axes and other tools, work hardening by beating the working edge with a hammer, thinning out the metal and increasing its strength. Finished objects could also be engraved or decorated as appropriate.
Second, the alloy is capable of greater work-hardening than is the case with pure copper, so that it performs better when used for cutting or chopping. An increase in work-hardening capability arises with an increasing percentage of arsenic, and the bronze can be work-hardened over a wide range of temperatures without fear of embrittlement. Its improved properties over pure copper can be seen with as little as 0.5 to 2 wt% As, giving a 10-to-30% improvement in hardness and tensile strength.
Third, in the correct percentages, it can contribute a silvery sheen to the article being manufactured. There is evidence of arsenical bronze daggers from the Caucasus and other artifacts from different locations having an arsenic-rich surface layer which may well have been produced deliberately by ancient craftsmen, and Mexican bells were made of copper with sufficient arsenic to color them silver.
These matters were clarified considerably by 2016. The two relevant ancient sites in eastern Turkey (Malatya Province) are Norşuntepe and Değirmentepe, where arsenical bronze production was taking place before 4000 BC. Hearths or natural draft furnaces, slag, ore, and pigment had been recovered throughout these sites. This was in the context of architectural complexes typical of southern Mesopotamian architecture.
According to Boscher (2016), at Değirmentepe, arsenical copper objects were clearly manufactured around 4200 BC, yet the technological aspects of this production remain unclear. This is because the primary smelting of ore seems to have been undertaken elsewhere, perhaps already at the sites of mining.Loïc C. Boscher (2016), Reconstructing the Arsenical Copper Production Process in Early Bronze Age Southwest Asia. Ph.D. Thesis. University College London. p.75
In contrast, the related Norşuntepe site provides a better context of production, and demonstrates that some form of arsenic alloying was indeed taking place by the 4th millennium BC. Since the slag identified at Norşuntepe contains no arsenic, this means that arsenic in some form was added separately.Loïc C. Boscher (2016), Reconstructing the Arsenical Copper Production Process in Early Bronze Age Southwest Asia. Ph.D. Thesis. University College London. p.77
Societies using arsenical bronze include the Akkadians, those of Ur, and the Amorites, all based around the Tigris and Euphrates rivers and centres of the trade networks which spread arsenical bronze across the Middle East during the Bronze Age.
The Chalcolithic-period Nahal Mishmar hoard in the Judean Desert west of the Dead Sea contains a number of arsenical bronze (4–12% arsenic) and perhaps arsenical copper artifacts made using the Lost-wax casting, the earliest known use of this complex technique. "Carbon-14 dating of the reed mat in which the objects were wrapped suggests that it dates to at least 3500 B.C. It was in this period that the use of copper became widespread throughout the Levant, attesting to considerable technological developments that parallel major social advances in the region." "The Nahal Mishmar Treasure", Metropolitan Museum
In ancient Egypt, use of arsenical bronze/copper is confirmed since the second phase of Naqada culture, and then used widely until the beginning of the New Kingdom, i.e. in the Egyptian Chalcolithic, Early and Middle Bronze Age, and within the same eras also in ancient Nubia. In the Old Kingdom, era of the largest pyramids' builders, the arsenical copper was used for the production of tools at Giza. Arsenical copper was also processed in the workshop uncovered at Giza's Heit el-Ghurab, "lost city of pyramid builders" from the reign of Menkaure. Egyptian and Nubian objects made of arsenical copper were identified in the collections in Brussels, and in Leipzig. In the Middle Kingdom, use of tin bronze is increasing in ancient Egypt and Nubia. One of the largest studies of such material was the research of the Egyptian and Nubian axe blades in the British Museum, and it provided comparable results.
Sulfide deposits frequently are a mix of different metal sulfides, such as copper, zinc, silver, arsenic, mercury, iron and other metals. (Sphalerite (ZnS with more or less iron), for example, is not uncommon in copper sulfide deposits, and the metal smelted would be brass, which is both harder and more durable than copper.) The metals could theoretically be separated out, but the alloys resulting were typically much stronger than the metals individually.
The use of arsenical bronze spread along trade routes into northwestern China, to the Gansu–Qinghai region, with the Siba culture, Qijia culture and Tianshanbeilu cultures. However it is still unclear as to whether arsenical bronze artifacts were imported or made locally, although the latter is suspected as being more likely due to possible local exploitation of mineral resources. On the other hand, the artifacts show typological connections to the Eurasian steppe.Jianjun Mei, page 9 in Metallurgy and Civilisation, Eurasia and beyond, ed: Jianjun Mei and Thilo Rehren. Proceedings of the 6th international conference on the beginnings of the use of meals and alloys (BUMA VI), 2009, Archetype publications, London.
The Eneolithic period in Northern Italy, with the Remedello and Rinaldone cultures in 2800 to 2200 BC, saw the use of arsenical bronze. Indeed, it seems that arsenical bronze was the most common alloy in use in the Mediterranean basin at this time.Eaton, E. R. 1980. Early metallurgy in Italy. In: ed. W. A. Oddy, Aspects of early metallurgy, occasional paper 17, British Museum Publications, London.
In South America, arsenical bronze was the predominant alloy in Ecuador and north and central Peru, because of the rich arsenic bearing ores present there. By contrast, the south and central Andes, southern Peru, Bolivia and parts of Argentina, were rich in the tin ore cassiterite and thus did not use arsenical bronze.
The Sican Culture of northwestern coastal Peru is famous for its use of arsenical bronze during the period 900 to 1350 AD. Arsenical bronze co-existed with tin bronze in the Andes, probably due to its greater ductility which meant it could be easily hammered into thin sheets which were valued in local society.
Chronic arsenic poisoning leads to peripheral neuropathy, which can cause weakness in the legs and feet. It has been speculated that this lay behind the legend of lame smiths in many cultures and myths, such as the Greek god Hephaestus. As Hephaestus was an iron-age smith, not a bronze-age smith, the connection would be one from ancient folk memory.
A well-preserved natural mummy of a man who lived around 3,200 BC found in the Ötztal Alps, popularly known as Ötzi, showed high levels of both copper particles and arsenic in his hair. This, along with Ötzi's copper axe blade, which is 99.7% pure copper, has led scientists to speculate that he was involved in copper smelting.
|
|